

Q SERIES - DUAL-FREQUENCY GNSS RECEIVER FOR LOW-COST SATELLITE APPLICATIONS

Introduction

The Q Series is family of configurable dual-frequency GPS/GLONASS receivers that offer positioning solutions for low-orbit and low-cost satellite applications. Its form factor, low power, and high-performance provides an ideal solution for CubeSats and other nano-satellite missions.

Applications

- LEO satellite navigation.
- Precise orbit determination.
- High precision terrestrial navigation.

Features

- One or two antenna inputs.
- Two configurable RF channels for each antenna.
- Capable of receiving GPS L1/L2C and GLONASS L1.
- Works with active or passive antenna.
- Single +5 V DC supply.
- Single and dual-frequency PVT navigation solution.
- Pulse Per Second (PPS) output pin.
- Raw pseudorange and carrier-phase measurements.
- UART main navigation interface with RS-422 signaling.
- USB secondary navigation interface available on main connector for optional USB-UART communication interface with the receiver.
- Two CAN bus interfaces available.
- Watchdog monitor circuit for system reset.
- Current measurement and short-circuit protection with fail flag available on main connector.
- Eight GPIO pins available on main connector.

Physical and Electrical Characteristics		
Dimensions	90 x 96 x 15 mm	
Weight	< 200 g	
Power		
Input voltage	+5.0 V ± 5%	
Power consumption ¹		
GPS L1 on one antenna	~ 1.5 W	
GPS L1/L2C on one antenna	~ 1.7 W	
GPS L1/L2C on each antenna	< 2 W	
Active antenna power		
On board bias-T	+3.0 V	
Max output current	50 mA	

¹ Typical values under nominal GPS constellation using passive antenna.

PC104-like configuration (Pumpkin CubeSat Bus)	2 x 54-pin dual row female header
Antenna inputs	SMA female

Performance		
Tracking channels		
GPS L1 C/A - GLONASS L1	24	
GPS L2/C	12	
Tracking sensitivity	27 dB-Hz	
Time to first fix		
Cold start	< 15 min, 10 min typical	
Warm start (user PVT and GPS almanac)	< 5 min, 3 min typical	
Solution accuracy (in orbit, GPS dual-frequen	cy)	
3D position error		
Punctual solution	< 5 m (1σ), < 3 m typical	
Filtered solution	< 3 m (1σ), < 2 m typical	
3D velocity error		
Punctual solution	< 0.4 m/s (1o), < 0.2 m/s typical	
Filtered solution	< 2 cm/s (1 σ), < 5 mm/s typical	
Orbital Dynamics		
Altitude	LEO (approx. 200 km to 2000 km)	
Velocity	< 15 km/s	
Acceleration	< 5G	

Data Outputs	
	GPS L1 C/A
PVT navigation solution	GLONASS L1OF
	GPS L1 C/A + GPS L2C
Raw pseudorange, carrier-phase, and C/N ₀	1 Hz
Pulse Per Second (PPS) signal	

Configuration Options

Model	Antenna configuration	GNSS signals
QS1000	Single	GPS L1 C/A
QD1000	Dual	GPS L1 C/A
QS0100	Single	GLONASS L1OF
QD0100	Dual	GLONASS L1OF
QS2000	Single	GPS L1 C/A + GPS L2C
QD2000	Dual	GPS L1 C/A + GPS L2C
QX1100	Single (at both inputs)	GPS L1 C/A + GLONASS L1OF
QX2100	Single (at both inputs)	GPS L1 C/A + GPS L2C + GLONASS L1OF

Revision History

Date	Detail
23/06/2023	Release V1.0.

Disclaimer

SENyT reserves the right to make any changes without further notice to correct errors and improve reliability, function, or design.